

(rs

Data to Design: Identifying Important Bird Areas and Seabird Connectivity in the Alaskan Arctic *Melanie Smith, Audubon Alaska*

Overview

- Process from data to designing Important Bird Areas (IBAs)
- Three main analyses for seabird data
- Challenges related to connectivity

Identify Available Data

Survey Transects

- Ship-based
- Aerial

Telemetry

- **PTT**
- GPS
- Geolocator

Expert

- Ecological, local,
 - traditional knowledge

Genetic

- Genetic
 markers
- Isotopes

images: Milo Burcham, USFWS

Connecting the Annual Cycle

	Colony	Survey	Tracking
Breeding	Х	Х	Х
Foraging	Х	Х	Х
Staging		Х	Х
Molting		Х	Х
Wintering		Х	Х

Important Bird Areas =

- 1% or more of global or biogeographic population OR
- Congregation of species of special concern

Acquire and Organize

Contents Preview Description				
Name	Туре			
🖶 Bathymetric	File Geodatabase Feature Dataset			
🖶 Beluga_Whale	File Geodatabase Feature Dataset			
🖶 Birds	File Geodatabase Feature Dataset			
🖶 Bowhead_Whale	File Geodatabase Feature Dataset			
🖶 Ecosystem_Analysis	File Geodatabase Feature Dataset			
🔁 Energy	File Geodatabase Feature Dataset			
🖶 Gray_Whale	File Geodatabase Feature Dataset			
🖶 Marine_Mammals	File Geodatabase Feature Dataset			
🔁 Polar_Bear	File Geodatabase Feature Dataset			
🖶 Ringed_Seal	File Geodatabase Feature Dataset			
🖶 Spotted_Seal	File Geodatabase Feature Dataset			
🖶 Walrus	File Geodatabase Feature Dataset			
🏙 benthic_biomass_g_m2	File Geodatabase Raster Dataset			
IIII Birds_Int_Glob_Sig_Prop	File Geodatabase Raster Dataset			
IBCAO_GEBCO_blendedDEM	File Geodatabase Raster Dataset			
IBCAO_GEBCO_hlsd	File Geodatabase Raster Dataset			
IBCAO_v3	File Geodatabase Raster Dataset			
🎟 pct_days_ice_Annual_Average_2008_2012	File Geodatabase Raster Dataset			
🎟 pct_days_ice_Apr_June_2008_2012	File Geodatabase Raster Dataset			
🎟 pct_days_ice_Jan_Mar_2008_2012	File Geodatabase Raster Dataset			
<pre>Image: pct_days_ice_July_Sept_2008_2012</pre>	File Geodatabase Raster Dataset			
<pre>Image: pct_days_ice_Oct_Dec_2008_2012</pre>	File Geodatabase Raster Dataset			
🏙 PolarBear_autumn_mean_scaled	File Geodatabase Raster Dataset			
IIII PolarBear_spring_mean_scaled	File Geodatabase Raster Dataset			
🎟 PolarBear_summer_mean_scaled	File Geodatabase Raster Dataset			
IIII PolarBear_winter_mean_scaled	File Geodatabase Raster Dataset			
IIII Primary_Productivity_mg_m3	File Geodatabase Raster Dataset			

				Avg.	Avg.	Max.
Common Name	Country	Site Name	Observed Foraging Distance	Average	Maximum	Maximum
Thick-Billed Murre	Iceland	Latrabjarg	max 168km		168	168
Thick-Billed Murre	Greenland	Hakluyt Island	max 50km, avg 20-25km	22.5	50	50
Thick-Billed Murre	Greenland	Hakluyt Island	within 50km		50	50
Thick-Billed Murre	Norway	Western Spitsbergen	approx 85km	85		
Thick-Billed Murre			30-50km, max 100km	40	100	100
Thick-Billed Murre	US	Alaska	8-104km	56	104	104
Thick-Billed Murre	US	Pribilof Islands, Alaska	up to 110km		110	110
Thick-Billed Murre	Canada	Prince Leopold Island	avg 80km, max 150-175km	80	162.5	175
Thick-Billed Murre	Canada	Coats Island	c100km	100		
Thick-Billed Murre	Atlantic		normal 2-25km, max 75km	13.5	75	75

Foraging Radius Approach

Soanes et al. 2016, Biological Conservation

COLONY FORAGING DISTANCE BUFFERS

The average foraging radius for all seabird species listed in the BLI database

Survey Data Approach Smith et al. 2014, Biological Conservation

PRESENCE The distribution of Crested Auklet data

PERSISTENT, ADJACENT

Data that will be used for hotspot analysis of Crested Auklets

ANALYZE LOCAL ABUNDANCE Results of the hotspot analysis for Crested Auklet

VALIDATE IBAs

Adequate abundance, repeated high use, multi-year persistence

Tracking Data Approach Lascelles et al. 2016, Diversity and Distributions

CONNECT TRIPS

Map trips by individual, combine for population-level overview

IDENTIFY IBAs

Validation steps to ensure representation of population patterns

Drawing Area Boundaries :)

Bering Sea Shelf Break *Expert Drawn*

Drawing Area Boundaries :)

Bering Sea Shelf Break Expert Drawn (survey data comparison)

Drawing Area Boundaries 🔔

Bering Sea Shelf Break *Top Quantile*

Drawing Area Boundaries 🔔

Bering Sea Shelf Break *4x Average Density*

Drawing Area Boundaries 🔔

Bering Sea Shelf Break Moving Window

Drawing Area Boundaries :)

Bering Sea Shelf Break *Moving Window*

Composite Maps

Composite Mapping Approach

Smith et al. 2017, Ecological Atlas of the Bering, Chukchi, and Beaufort Seas

CONNECTIVITY CHALLENGES

Connectivity is difficult to define

Dynamic conditions
Daily to decadal variability
Shifting ice, productivity
Focus on the most predictably occupied areas

CONNECTIVITY CHALLENGES

Connectivity is difficult to define

- Drawing boundaries
 - Marine environment lacks clear boundaries
 - Methods produce different lines
- Experiment with methods and be aware of their implications for conservation area design

CONNECTIVITY CHALLENGES

Connectivity is difficult to define

- Species behave differently
 - Colonial seabirds tied to breeding colonies
 - Destination-oriented migrants with predictable stopovers
 - Pelagic wanderers following food
- <u>Blend multiple data types and</u> methods
- Look at the annual cycle holistically to identify connections

Data to Design: Identifying Important Bird Areas and Seabird Connectivity in the Alaskan Arctic *Melanie Smith, Audubon Alaska*